Draw the free body diagram of the beam as follow:
 
 
 
 
Apply force equilibrium condition along axial direction.
 
 
 
 
Apply force equilibrium condition along vertical direction.
 
 
 
 
Apply moment equilibrium condition about node A.
 
 
 
 
Apply the equation for moment of inertia, 

, for a hollow rectangle.
 
Here, the width of the outer rectangle is

, the height of the outer rectangle is

, the width of the inner rectangle is

, and the height of the inner rectangle is

,
 
Substitute 100 mm for

, 150 mm for

, 90 mm for

, and 140 mm for 

.
 
 
 
 
 
Apply the equation for area, 

, of the rectangle.
 
Substitute 100 mm for

, 150 mm for

, 90 mm for

, and 140 mm for 

.
 
 
 
 
 
Apply the formula for static moment of area, 

, at point 

.
 
Substitute 

 for

, 

for

,

 for

, and 

 for

.
 
Apply the formula for shear stress at point A.
Substitute 

for

, 

 for

, 

 for 

, 90 mm for 

, and 100 mm for 

.
 
 
 
 
 
Apply the formula for the normal stress at point A.
 
 
 
 
Apply the formula for the average normal stress at point A.
Substitute 

 for

.
 
 
 
 
 
Apply the formula for the radius of Mohr’s Circle for point A.
 
 
 
 
Apply the formula for the principle stresses at point A.

.
 
Substitute 

 for 

 and 

 for

 to calculate the maximum and the minimum principal stresses at point

.
 
Therefore, the stresses at point 

are 

and

.
 
 
 
 
 
Apply the formula stresses at point B by using Equation 9.10.
Substitute

for

,

 for

, 

 for 

, 

 for 

 and 

 for 

.
 
Point 

lines on the bottom surface of the boom, so there is no shear stress.
 
Thus, the stresses at point 

 are 

and

.