- ahmad alhayek

 

Q2: A factory produces 3 types of rubber powder. Table Q2 shows the time and material additives required to produce each type

Show transcribed image text

Expert Answerinformation icon

  • Verma's Avatar

    If any doubt please comment me, I will help you

    for multiple questions answer only first question

    Let x1,x2 & x3 be the quantity of rubber powder RA,RB & RC produced respectively.

    Maximise:Z=-2.05x1+100.6x2+40.85x3

    Subject to

    15x1+(25+2.2)x2+(12+5.1)x3<=60*6.5

    15x1+27.2x2+17.1x3<=390

    20x1+55x2<=5000

    45x1+100x2+72x3<=7500

    x1>=10,

    x2>=25,

    x3>=5

    Introducing slack,surplus & artificial variables

    Maximise:Z=-2.05x1+100.6x2+40.85x3+0S1+0S2+0S3+0S4+0S5+0S6-MA1-MA2-MA3

    Subject to

    15x1+27.2x2+17.1x3+S1<=390

    20x1+55x2+S2<=5000

    45x1+100x2+72x3+S3<=7500

    x1-S4+A1>=10,

    x2-S5+A2>=25,

    x3-S6+A3>=5

    x1,x2,x3,S1,S2,S3,S4,S5,S6,A1,A2,A3>=0x3 Iteration-1 Cj -2.05 100.6 40.85 000000- MM-M | В СВ ХВ х1 x2 S1 S2 S3 S4 S5 S6 A1 A2 A3 MinRatio XBx2 S1 0 390 15 (27.2)

    Negative minimum Zj-Cj is -M-100.6 and its column index is 2. So, the entering variable is x2.

    Minimum ratio is 14.3382 and its row index is 1. So, the leaving basis variable is S1.

    ∴ The pivot element is 27.2.

    Entering =x2, Departing =S1, Key Element =27.2

    Iteration 2 -2.05 100.6 40.85 0 OOO OOM B CB XB 21 x2 x3 S1 S2 S3 S4 S5 S6 A1 A3 MinRatlo XBx1 x2 100.6 14 3382 0.5515 1 0.62

    Negative minimum Zj-Cj is -0.3713M+22.3949 and its column index is 3. So, the entering variable is x3.

    Minimum ratio is 5 and its row index is 6. So, the leaving basis variable is A3.Iteration 3 Cj -2.05 100 6 40.85 0 0 0 DOM B CB xe x1 x2 *3 S1 MinRatio S2 S3 S4 S5 S6 A23 XBx3 x2 100.6 8.8235 0 1 0.6287 0.Negative minimum Zj-Cj is -0.3713M+22.3949 and its column index is 3. So, the entering variable is x3.

    Minimum ratio is 5 and its row index is 6. So, the leaving basis variable is A3.

    ∴ The pivot element is 1.Iteration 4 Сі -2.05 100.6 40.85 0 0 0 0 0 0 В -M CE XB x1 x2 x3 S1 S2 S3 S4 S5 S6 x2 A2 ninRatio 100.6 5.6801 D 1 0 0.036E 0

    Since all Zj-Cj≥0

    Hence, optimal solution is arrived with value of variables as :
    x1=10,x2=5.6801,x3=5

    Max Z=755.1728

    So to obtain maximum profit value of constraint x2>=25 should be changed to x2>=5.

    Comment 

ليست هناك تعليقات:

إرسال تعليق

ahmad alhayek تصميم ahmad alhayek جميع الحقوق محفوظة 2016

صور المظاهر بواسطة sndr. يتم التشغيل بواسطة Blogger.