chre - ahmad alhayek

chre

 

Image for 5) Let X1, X2, ...Xn ~ N(theta, theta) 0 < theta < infinity. Find the MLE of theta.

Show transcribed image text

Expert Answerinformation icon

  • Ishfaq6's Avatar

    Since X_1,X_2,...X_n\sim N(\theta,\theta) . Define the likelihood function as

    L=\prod_{i=1}^{n}\left [ \frac{1}{\sqrt{2\pi \theta}}\exp \left \{ -\frac{1}{2\theta}(x_i-\theta)^2 \right \} \right ]\\ ~~~~~~~~=\left ( \frac{1}{\sqrt{2\pi \theta}} \right )^n \exp \left \{ -\sum_{i=1}^{n} \frac{(x_i-\theta)^2}{2\theta} \right \} \\ \Rightarrow \ln L=-\frac{n}{2} \ln (2\pi \theta)-\frac{1}{2\theta}\sum_{i=1}^{n} {(x_i-\theta)^2} \\ ~~~~~~~~~~=-\frac{n\ln 2\pi}{2}-\frac{n\ln \theta}{2}-\frac{1}{2\theta}\sum_{i=1}^{n} {(x_i-\theta)^2}

    Differentiate with respect to \theta gives

    \frac{\partial }{\partial \theta}\ln L=\frac{-n}{2\theta}+\frac{1}{2\theta}\sum_{i=1}^{n} 2(x_i-\theta)+\frac{1}{2\theta}\sum_{i=1}^{n}(x_i-\theta)^2

    Now \frac{\partial }{\partial \theta}\ln L=0 gives

    -n+\sum_{i=1}^{n} 2(x_i-\theta)+\frac{1}{\theta}\sum_{i=1}^{n}(x_i-\theta)^2 =0 \\ \Rightarrow \sum_{i=1}^{n}\left ( 2(x_i-\theta)+\frac{(x_i-\theta)^2}{\theta} \right )=n \\\Rightarrow \sum_{i=1}^{n}(x_i^2-\theta^2)=n\theta \\ \Rightarrow n\theta^2+n\theta-\sum_{i=1}^{n}x_i^2=0 \\ \Rightarrow \theta(\theta+1)=\frac{1}{n}\sum_{i=1}^{n}x_i^2

    Comment 

ليست هناك تعليقات:

إرسال تعليق

ahmad alhayek تصميم ahmad alhayek جميع الحقوق محفوظة 2016

صور المظاهر بواسطة sndr. يتم التشغيل بواسطة Blogger.